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Browser Market Share



Terminology

• Browser Fingerprinting
• Many unique details of a user’s browser such as its hardware, operating system, 

browser configuration and preferences can be exposed through the browser
• An attacker who collects and sums these outputs can create a unique fingerprint for 

tracking and identification purposes

• Browser features
• All functionality that is available to attackers directly through JavaScript
• These are the root problem of most web attacks

• Fingerprintability
• Ratio of browser features that are associated with fingerprinting techniques in a 

browser version.



Introduction

• Chrome has the highest 
market share between 
browsers

• Safari, Firefox, and Opera are 
the next browsers with high 
market share

• Opera and Chrome are both 
Chromium-based and share 
the same codebase



Research Questions

• Are major versions of Firefox, Chrome, and Opera browsers fingerprintable based on their 
feature sets?

• Are these browsers becoming more fingerprintable over time?

• With respect to browser bloating, how does Firefox compare to Chrome and Opera?

• Could the private window mode reduce the possibility of being fingerprinted?

• Is there any noticeable difference between Chrome and Opera in case of fingerprintability? 



Feature Gathering

• Feature: JavaScript objects, methods, and property values built into the global namespace of the browser’s 
JavaScript implementation

• Crafted a JavaScript instrumented webpage that analyzes the visiting browser when it is visited.

• The code probes and iterates through the features supported by the browser 
• Using JavaScript to traverse the tree of non-cyclic JavaScript object references accessible from a 

pristine window object
• Collects the full feature names
• Each feature name comprises the sequence of property names leading from the global object to a 

given built-in JavaScript value.

• Captured feature sets are then stored in a database, tagged with identifying metadata



Testing Platform

• Used BrowserStack platform to visit the feature extractor webpage in 
headful mode

• Cloud-based browser testing platform

• All of the tests are run on a single device with a single device configuration 
and OS

• Include all the major browser versions release during March 2016-April 2020
• Chrome 49-81
• Firefox 45-75
• Opera 36-68



Browser Fingerprinting APIs

• We generate a list of suspicious APIs associated with fingerprinting

• Contains 313 JavaScript APIs

• These APIs provide functionality. However, they can be abused by creating a unique 
fingerprint of the client’s browser.

• Literature Review 
• Extract suspicious APIs discussed in prior works: Panopticlick, AmIUnique, Hiding in the Crowd, and 

FPDetective.
• These APIs Form 10% of the list

• Experimental Analysis



Experimental Analysis

• Crawling websites and Extracting Suspicious APIs from the data

• A crawler that visits EasyList domain file. Contains 13,241 domains

• Processed the raw data and collected all the API usages.
• API usage of 8,682 domains with 56,828 origins was collected

• Manual Analysis to check if the APIs  actually expose user information
• Check Mozilla’s MDN web docs
• API is classified as a suspicious fingerprinting API if it can provide the information to filter 

certain users out

• Keyword search in all the crawled domains (BatteryManager)

• Expand the list by visiting known fingerprinting websites such as amiunique.org



Limitations

• Might not have all the fingerprinting APIs since we only crawled EasyList
domains

• Manual Analysis might be affected by misonceptions between what is 
discussed in the Mozilla API page and the real API usage



Results

• Analysis of the Browser Features

• Browser Fingerprintability

• Unique Feature Set



Feature Trends

• Browsers are becoming more bloated 
over time.

• Chrome and Opera share the same 
codebase. The trends are similar but 
minor differences exists between them

• Firefox contains much less features 
compared to Chromium-based browsers



Feature Categories

• Persistent Features
• Added to a specific version, and that continue to 

exist

• Non-Persistent Features
• Existed in older versions of the browser, but were 

removed, and never appeared again

• Recurring Features
• Added and removed from the browser from time 

to time



Feature Add and Removals

• Although both browsers are having more features over time, Adding and Removing Feature Trends are different.

• Firefox tries to maintain its total number of features



Browser Fingerprintability

• Browsers are becoming more 
fingerprintable over time

• Chrome 81 has 274 fingerprinting APIs!
(The total number of suspicious APIs is
313)

• Adding more features is leading to 
having more fingerprintable APIs



Analyzing Spikes in the Graph

• January 2017
• WebGL 2.0 API Support was added to Chrome, Firefox, and Opera.
• Provides a new rendering context, and supports objects for the HTML5 canvas element
• HTML5 was enabled for all users by default in Chrome
• Adobe Flash Player was disabled and only allowed to run with specific user permissions.
• More than 100 fingerprinting APIs were found

• September 2017
• NetworkInformation API was added to Chrome
• Provides information about the connection a device is using to communicate with the network

• April 2017
• BaseAudioContext API was added to Firefox
• Acts as a base definition for online and offline audio-processing graphs



Analyzing Spikes in the Graph

• These APIs exist in our suspicious fingerprinting APIs list.

• Surprisingly, some of these APIs were not even mentioned directly in 
Chrome and Firefox release notes.

• Even a minor feature addition to a browser, which might not have been 
discussed in the release notes, could include fingerprintable APIs. 



Incognito and Private Window Mode

• There is a small difference between total number of features in normal 
mode and incognito mode

• Chrome 80’s normal mode has 11,946 features.
• Chrome 80’s incognito mode has 11,936 features.

• Every fingerprinting API exists on both normal and incognito mode

• Incognito and Private Window mode have no impact on fingerprintability



Unique Features Set

• For each browser version in our study, we created a Feature Set
• Includes all the extracted features

• There exist no two browsers that possess the same feature set
• Only by looking at the feature set, each browser version is uniquely 

fingerprintable.
• Add, remove, and re-adding features make them more fingerprintable

• Feature sets have become more similar recently.



Prior Work

• Multiple works on browser fingerprinting
• Synder et al. Uses same method of feature collection. They measure the feature usage among the 

Alexa top websites.
• Chenxiong et al. Propose a debloating framework for the browser that removes unused features
• Eckersley. How a unique fingerprint is formed by combining wide range of browser properties
• Cao et al, Olejnik et al, Nikiforakis et al, Mowery et al. Study on a single fingerprinting method

• Our aim was to collect data and analyze the trends to see whether we are becoming better at managing 
browser fingerprinting

• No study have looked at popular browsers historically and have attempted to determine how their 
fingerprintability has evolved over the years



Summary

• We extracted every browser feature in all browser versions using the browser APIs. We 
created a list of fingerprinting APIs based on different prior works.

• We show that all major Mozilla Firefox, Google Chrome, and Opera browser versions 
between 2016 until 2020 are uniquely fingerprintable based exclusively on the presence or 
absence of browser features

• We conclude that incognito mode has no impact on fingerprintability

• We analyze Mozilla Firefox, Google Chrome, and Opera and report major differences 
between feature introduction and removal trends.

• Although Chrome and Opera are both based upon Chromium and share the same 
codebase, there are still differences in their feature introduction and removal patterns.

• But this shared codebase makes them very similar in our fingerprintability analysis.



Questions?


