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Abstract

Web Application Firewalls (WAFs) have been introduced as es-

sential and popular security gates that inspect incoming HTTP

traffic to filter out malicious requests and provide defenses against

a diverse array of web-based threats. Evading WAFs can compro-

mise these defenses, potentially harming Internet users. In recent

years, parsing discrepancies have plagued many entities in the

communication path; however, their potential impact on WAF

evasion and request smuggling remains largely unexplored. In

this work, we present an innovative approach to bypassing WAFs

by uncovering and exploiting parsing discrepancies through ad-

vanced fuzzing techniques. By targeting non-malicious components

such as headers and segments of the body and using widely used

content-types such as application/json, multipart/form-data,
and application/xml, we identified and confirmed 1207 by-

passes across 5 well-known WAFs, AWS, Azure, Cloud Armor,

Cloudflare, and ModSecurity. To validate our findings, we con-

ducted a study in the wild, revealing that more than 90% of web-

sites accepted both application/x-www-form-urlencoded and

multipart/form-data interchangeably, highlighting a significant

vulnerability and the broad applicability of our bypass techniques.

We have reported these vulnerabilities to the affected parties and

received acknowledgments from all, as well as bug bounty rewards

from some vendors. Further, to mitigate these vulnerabilities, we

introduce HTTP-Normalizer, a robust proxy tool designed to rigor-

ously validate HTTP requests against current RFC standards. Our

results demonstrate its effectiveness in normalizing or blocking all

bypass attempts presented in this work.
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1 Introduction

The widespread adoption of web applications has made them prime

targets for cyberattacks. To protect these applications, Web Ap-

plication Firewalls (WAFs) have been introduced as essential and

popular security gates. These systems inspect incoming HTTP traf-

fic to filter out malicious requests, and provide defenses against a

diverse array of web-based threats, ranging from SQL injection to

Cross-Site Scripting attacks, and beyond.

Despite their critical role, WAFs are not immune to evasion. Tra-

ditional WAF evasion techniques often rely on distorting attack

payloads to bypass detection rules while ensuring the payloads

* Corresponding Author.

remain executable by web applications. Attackers usually either ob-

fuscate the payload with encoding schemes or inject new characters

into payloads to bypass WAF rules. However, WAF vendors have

already taken measures against most of these bypass techniques,

which have been known for many years now. Also, these types of

attacks assume the ability of the target web application to parse

the encoded, or obfuscated payload.

As the threat landscape evolves, HTTP Request Smuggling (HRS)

attacks have gained significant attention. HRS exploits discrepan-

cies in the interpretation of HTTP requests between different enti-

ties in the communication chain, such as servers, proxies, andWAFs.

These attacks can have severe consequences, including unautho-

rized access to sensitive information, session hijacking, and server

compromise. The increasing complexity of web applications and

their reliance on intermediary components have increased the risk

of HRS vulnerabilities. Recent studies have investigated the impor-

tance of HRS, identifying new variants of attack and suggesting

defense mechanisms [8, 13–15].

Parsing discrepancies, caused by inconsistencies in the interpre-

tation of HTTP requests, play a critical role in enabling attacks such

as HRS. These discrepancies first appeared in the communication

path between servers, but WAFs, which are integrated to this path,

may themselves be vulnerable to such inconsistencies. As a layer be-

tween the client and the web application,WAFsmust correctly inter-

pret HTTP requests to protect against malicious activities. However,

vulnerabilities in their parsing mechanisms can allow attackers to

exploit these discrepancies, bypassing the WAF, and allowing at-

tacks to reach the web application. Building on this understanding

of the limitations of current WAF defenses and the emerging threat

of HRS, we present a novel, real-world approach to bypassingWAFs.

Our method exploits content parsing discrepancies between WAFs

and web application frameworks. Unlike traditional evasion tactics,

we keep the attack payload intact, and focus on mutating specific

content elements, such as the boundary in multipart/form-data,
or namespace feature in application/xml, causing the WAF to

misinterpret the content. This misinterpretation allows the payload

to pass through, while the web application framework correctly

parses and executes the attack.

Our work tested a wide range of combinations of popular

WAFs, including Google Cloud Armor, Cloudflare, AWS WAF,

Azure WAF, and ModSecurity on NGINX, alongside widely-used

web application frameworks such as Flask, Laravel, FastAPI,

Gin, Express, and Spring Boot. We focused on three com-

plex content types: multipart/form-data, application/xml,
and application/json. By repurposing a grammar-based and
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structure-aware HTTP fuzzer, we identified implementation dif-

ferences in how these WAFs and frameworks parse these content

types. Our findings reveal that most WAF-framework pairs can be

bypassed using various content distortions, highlighting a signifi-

cant vulnerability in current WAF implementations.

In this work, we summarize our contributions as follows:

• We introduce a fundamentally new approach that uses con-

tent parsing discrepancies to bypass web application fire-

walls.

• We present a practical methodology for automatically find-

ing new discrepancy-based bypass vectors using black-box

fuzzing techniques.

• We design and implement a pipeline that tests these bypass

vectors against popular web application firewalls and frame-

works.

• We demonstrate successful discrepancy-based bypass in-

stances on the pairs ofmost popularweb application firewalls

and frameworks, and we coordinate mitigation efforts with

the affected technology vendors.

• We analyze the interchangeability of our bypass techniques

using real-world data from PublicWWW, demonstrating that

our findings are widely-applicable and practical across real-

world web applications.

• We present the first tool, HTTP-Normalizer, that ensures
that all proposed bypasses are avoidable by enforcing proper

techniques.

Availability. WAFFLED, fuzzing grammars, WAF configu-

ration, web application frameworks and parsers code, and

HTTP-Normalizer are open source, and are available on this 1 repos-
itory.

2 Background

2.1 Web Content Types and RFCs Explained

Our work focuses on using specific features of content-types to

bypass a malicious request; thus, it is crucial to inspect the details

of the content and media types discussed in this paper.

RFCs (Request for Comments). RFCs [10] are a series of doc-

uments that define protocols, procedures, and conventions used on

the Internet and networking standards. They are published by the

Internet Engineering Task Force (IETF) and related organizations.

Each RFC is assigned a unique number, and these documents serve

as the authoritative source of information on various Internet stan-

dards and protocols. For instance, the structure of HTTP headers,

MIME types, and various other web technologies are defined by

respective RFCs.

ABNF (Augmented Backus-Naur Form). ABNF grammar

rules [5] are a formal notation used to specify the syntax of RFCs.

ABNF extends the basic BNF notation to provide a more flexible

and precise way to define the syntax of Internet protocols. It is par-

ticularly important in our work as it allows for precise definitions

of content types and headers, which we exploit to identify parsing

discrepancies in WAFs. By understanding and manipulating ABNF

rules, we can generate requests that challenge the ability of WAFs

to consistently parse and enforce these standards.

1
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Multipart.Multipart content-types allow HTTP messages to in-

clude multiple entities with varying media types in a single message

body. They are crucial for handling file uploads and complex data

structure support. These content-types, such as multipart/form-

data, multipart/related, and multipart/mixed, are governed by spe-

cific RFCs (e.g., RFC 2387, RFC 7578, RFC 2045-2047) [6, 7, 16–18]

that define their structure and usage scenarios. Our research inves-

tigates the complexities of multipart/form-data requests, exploiting

features such as boundary definitions, charset, content-disposition,

and other custom headers.

XML. ExtensibleMarkup Language serves as a flexible format for

structured data representation, commonly used in data exchange

protocols. XML-based requests, defined in RFC 7303 [21], are char-

acterized by elements such as DOCTYPE declarations, schemas, and

CDATA sections. Our approach includes mutating these structural

elements to investigate WAF responses to XML-specific parsing

matters. For example, variations in DOCTYPE declarations and

CDATA usage are tested to identify vulnerabilities in WAF han-

dling of XML content.

JSON. JavaScript Object Notation, described in RFC 8259 [4],

is a lightweight data interchange format widely used in modern

web applications. JSON requests are characterized by their simple

structure based on key-value pairs. We manipulate JSON object

formatting and nested structures to assess WAF handling of JSON

parsing anomalies.

2.2 HowWAFs Work

To understand the functioning of WAFs, one must visualize the

transactional exchange between web applications and users. Before

a web application receives an HTTP request, the WAF intercepts

this request, serving as a firewall positioned between the application

and the user. It thoroughly scrutinizes the request by analyzing its

parameters, headers, and payload to identify any potential signs of

malicious intent. If the request appears legitimate, theWAF allows it

to pass through to the web application, enabling normal operation.

However, if the request exhibits characteristics of an attack, the

WAF either completely blocks the whole request, or removes the

malicious part of it, preventing the malicious code from executing

and protecting the web application from harm. Figure 1 represents

this process. There are many industrial and open source WAFs

available to the public, each using their own techniques to prevent

malicious requests to be passed to the protected web application.

Notable WAF providers include Cloudflare, Google Cloud Armor,

Microsoft Azure WAF, Amazon AWS WAF, and ModSecurity.

Valid Request

Valid Request

Web Application
Firewall

Valid Request

Valid Request

Malicious Request

Figure 1: WAF filtering malicious requests.
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2.3 Foundations of WAF Operations and Ruleset

Definitions

A WAF operates by inspecting HTTP traffic between a client and a

web application, filtering out harmful requests to prevent attacks

such as SQL injection, cross-site scripting (XSS), and malicious

script uploads. The WAF is positioned inline with the traffic flow,

allowing it to analyze and intercept malicious content before it

reaches the application server. WAFs employ several detection

approaches.

Managed Rulesets. WAFs use predefined sets of rules that

define patterns associated with common attacks. These rulesets

are frequently updated to respond to new threats. Most WAFs use

their own custom rulesets. But one of the famous rulesets that is

widely used among almost all WAFs and most custom rulesets use

it as a base, is OWASP CRS (Core Rule Set) [3]. This ruleset is a

set of generic attack detection rules for use with compatible WAFs.

It aims to protect web applications from a wide range of attacks,

including the OWASP Top Ten. CRS provides protection against

many common attack categories, including SQL Injection, Cross

Site Scripting, Local File Inclusion, etc.

Signature-Based Detection. This method involves identifying

known attack vectors based on specific signatures or patterns in

the data. It is effective against known threats, but can be limited in

identifying novel or modified attacks.

Machine Learning-Based Detections. Some advanced WAFs

leverage machine learning algorithms to detect anomalies in traffic

patterns. These models can adapt to new threats over time, offering

a dynamic defense mechanism.

AWAF operates by scanning incomingHTTP requests, analyzing

headers, cookies, URL parameters, and body content. Each request

is parsed to extract these fields, allowing the WAF to evaluate them

against a predefined set of rules. These rules follow a structured

format:

1 i f < f i e l d >< ope ra to r ><va lue >

2 then < ac t i on >

Listing 1: WAF Rule Format

• Field: This could be any part of the HTTP request such as a

header, cookie, MIME type, or URL parameter.

• Operator: Common operators include equals, contains, not
equal, etc.

• Value: The specific value to match against.

• Action: The action to be taken if the rule matches, such as

block, skip, or send security challenge.

To accommodate complex attack patterns, WAF rules often rely

on regular expressions (regex). For instance, detecting SQL injec-

tion attempts may involve scanning URL parameters or request

bodies for SQL-related keywords. When a request arrives, the WAF

extracts relevant fields, evaluates them against the defined rules,

and executes the appropriate action. If a match is found, the WAF

may block the request, log the event, or challenge the user with ad-

ditional security measures such as a CAPTCHA. In cases where no

match occurs, the request is forwarded to the application without

interference.

Listing 2 presents an example of how a WAF rule might be

defined and applied. First, there should be a rule definition.

1 i f u r l _ p a r ame t e r " u s e r _ i npu t " c o n t a i n s "DROP TABLE

"

2 then b l o ck

Listing 2: Example WAF Rule. Field: url_parameter

user_input, Operator: contains. Value: DROP TABLE, and

Action: block

After a request is received by a WAF, it does request Parsing

and Rule Application. If a request is received with the URL pa-

rameter: user_input=DROP TABLE users, the WAF extracts the

user_input parameter, and evaluates it against the rule. if "DROP
TABLE" in user_input: The regex "DROP TABLE" matches the

parameter value. Since the action for such pattern is defined as

"block", the WAF executes the block action, denying the request

and logging the incident.

By using well-defined rules and regular expressions, a WAF

effectively protects web applications from a wide range of attacks.

The flexibility in defining rules allows security teams to tailor the

WAF to the specific needs of their applications, enhancing the

security without significantly impacting performance.

As explained, a critical aspect of WAF operation is how it parses

and interprets incoming data. Parsing behaviors can differ signifi-

cantly across various WAFs, leading to discrepancies in how they

process the same set of data. These discrepancies present a potential

avenue for bypassing WAFs, as attackers can exploit differences

in parsing to craft requests that are interpreted harmlessly by the

WAF, but maliciously by the target application. This work primarily

focuses on uncovering new bypassing techniques by abusing these

parsing discrepancies.

3 Related Work

3.1 Architecture, Payload, and Protocol Level

Bypasses.

At the architectural level, bypasses exploit vulnerabilities within

the web application’s infrastructure. Techniques such as IP spoofing

and server-side request forgery (SSRF) allow attackers to access

the origin server directly, circumventing WAF protection. Cache

poisoning attacks, as discussed by Meiners et al. [19], exploit CDN

vulnerabilities to disrupt access to web applications. Additionally,

file processing exploits, such as those highlighted by Freiling et

al. [12], offer insights into similar architectural vulnerabilities.

Bypassing WAFs at the protocol level typically involves ma-

nipulating communication protocols. HTTP request smuggling,

where a malicious request is embedded within a legitimate one, is a

key example, with T-Reqs [11] providing methods to identify such

vulnerabilities. Similarly, features such as chunked transfer encod-

ing, which involves fragmenting HTTP data into smaller chunks,

can be exploited to evade WAF detection. Dalili’s work on IP frag-

mentation [1] explore these protocol-level evasion strategies. Also,

SYMTCP [24] focuses on evading deep packet inspection, a princi-

ple that can be applied to circumvent WAFs at the protocol level.

Furthermore, Handley et al. [9] inspects the evasion of network

3



intrusion detection systems, a concept closely related to bypassing

WAFs at the protocol level.

Payload level bypassing techniques involve transforming the

original payload to render it undetectable by the WAF. Obfuscation

techniques, such as encoding or encryption, are frequently em-

ployed to conceal malicious code from WAF scrutiny. Additionally,

evasion techniques, such as altering the order of characters or incor-

porating whitespace, can be used to confuse the WAF, and facilitate

bypassing. Payload size manipulation, such as oversized POST re-

quests that exploited a vulnerability in Google Cloud Armor [2],

illustrates how payload modifications can defeat WAF protections.

Not all bypasses are feasible using by targeting a single level

approach above. Some works involve combining multiple tech-

niques to achieve a bypass. AutoSpear [20] exemplifies a tool that

automates WAF bypassing using a combination of architectural,

protocol, and payload-level techniques. Our work also fits in this

category, since we use both features of protocol-level and payload-

level techniques, although not modifying the attack payload.

The academic works discussed here significantly enhance our

knowledge of bypass techniques and WAF behavior, providing a

platform for further exploration in WAF bypassing methods. Our

work builds upon this foundation by introducing a novel approach

that exploits content-parsing discrepancies, pushing the boundaries

of existing methodologies. Unlike prior research, which often fo-

cuses on obfuscating payloads or manipulating protocol features,

our approach targets fundamental weaknesses in how WAFs parse

HTTP requests.

3.2 Differences with Prior Work on WAF

Bypasses

In recent work, Wang et al. [23], presented WAFManis, in which

they examined bypassingWAFs using protocol-level evasion. While

this work aligns with our work in exploring WAF vulnerabilities,

our research fundamentally differs in several key aspects.

Scope. While previous work has primarily concentrated on

protocol-level attacks, our work uniquely targets content-type-

specific attacks by exploiting parsing discrepancies within HTTP

requests. That is, our approach extends beyond the protocol layer

to focus on inconsistencies in both headers and bodies, targeting a

wider array of bypass scenarios. Although there is some overlap

in our findings with Wang et al., particularly concerning request

header mutations, this is not the primary focus of our research. In

contrast, by systematically examining all web-used content-types,

our approach offers a broader scope, potentially identifying bypass

techniques that have not been previously explored. Both works

advocate for a systematic approach, yet our focus on content-type-

specific parsing discrepancies enables the identification of a novel

category of WAF bypasses.

Methodological Differences and Expanded Coverage. Al-

though Wang et al. employ fuzzing to uncover WAF bypasses,

the methodologies diverge significantly. Our approach emphasizes

content-type-specific RFC rules and features within request bodies,

such as application/xml namespaces, multipart/form-data
custom headers and charsets, and application/json structures.

This distinction introduces a systematic exploration of bypasses

through various content-types, leading to the discovery of new

categories of bypasses beyond what is covered in previous work.

Classification.We propose a classification system for bypass

techniques, dividing them into 24 distinct types based on content

types, which facilitates easier detection, analysis, and reporting. In

contrast, Wang et al. defines only 3 attack types, which lack the

granularity needed for in-depth study and mitigation. Our system

also enables the identification of potential defenses for each bypass,

as discussed in the evaluation.

Practicality. Our research demonstrates the real-world appli-

cability of our findings by testing bypass techniques on 100 live

websites, while Wang et al.’s work was limited to a controlled envi-

ronment, highlighting the broader relevance of our work.

Mitigation. We introduce the HTTP-Normalizer, a proof-of-

concept strategy designed to eliminate parsing discrepancies by

enforcing strict RFC compliance, a contribution not present in

previous work.

4 WAFFLED Design and Methodology

Figure 2 provides an overview of the WAFFLED approach for find-

ing discrepancy-based bypass vectors for WAFs. The methodology

involves generating, mutating, prefiltering, and testing HTTP re-

quests across the WAFs and web application frameworks to identify

successful bypass instances.

4.1 Input Generation and Mutation

The fuzzer generates valid HTTP requests using a predefined gram-

mar that contains a web attack payload (e.g., SQL injection, Cross-

Site Scripting). Mutations are applied everywhere except the attack

payload itself, ensuring that bypass attempts focus on discrepancies

rather than payload obfuscation. The highlighted part in Listing 3

shows an XSS attack payload, which remains unmodified during

mutations.

These mutations are expected to give us new discrepancy-based

bypass instances. The goal is to confuse WAFs so they fail to prop-

erly parse the mutated requests and allow them through, while

the web application frameworks, despite the mutations, correctly

interpret and execute the attack payload.

4.2 Identifying Successful Bypass Instances

The target infrastructure consists of all tested WAFs where each

WAF is able to forward requests to all web application frame-

work instances. Each instance is a tiny web application that

parses received requests by using the parser library of the web

application framework (e.g., Flask) for the tested content type

(e.g., multipart/form-data). The results of parsing operation are

logged for a later analysis. If a log shows that the request is parsed

successfully and the request body contains the attack payload, then

the corresponding input request can be used to successfully bypass

the relevant WAF.

4.3 Motivating Example

Listing 4 presents an example of how parsing discrepancies can lead

to WAF circumvention. This example has two boundaries defined:

fake-boundary and real-boundary. When this request arrives at
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Figure 2: WAFFLED Overview.

the WAF, it picks the first one (i.e., fake-boundary) as the bound-
ary value and ignores the remaining boundaries, thereby missing

the attack payload. When it is forwarded to the web application

framework running behind the WAF, as it supports the boundary

continuation mechanism – which was standardized in RFC 2231

and allows the use of multiple parameters to contain a single pa-

rameter value – it takes the boundary value to be the concatenation

of those two values (i.e., real-boundary), thereby parsing the XSS

payload encapsulated between the real-boundary boundaries.

1 POST / HTTP /1.1
2 Host: victim.com
3 Content -Length: 114
4 Content -Type: multipart/form -data; boundary=1234
5

6 --1234
7 Content -Disposition: form -data; name=" field1"
8

9 <script>alert(document.cookie)</script>
10 --1234--

Listing 3: A malicious HTTP request using multipart/form-

data content type with an XSS attack payload. The malicious

part of the payload is highlighted and unmodified during the

mutations.

1 POST / HTTP /1.1
2 Host: victim.com
3 Content -Length: 230
4 Content -Type: multipart/form -data;
5 boundary=fake-boundary;boundary*0=real-;boundary*1=boundary
6

7 --fake-boundary
8 Content -Disposition: form -data; name=" field1"
9

10 value1
11 --fake-boundary--
12 --real-boundary
13 Content -Disposition: form -data: name="id"
14

15 <script>alert(document.cookie)</script>
16 --real-boundary--

Listing 4: Amalicious multipart/form-data request that uses
parameter continuation.

5 Experiment Setup

5.1 Tools and Infrastructure for Experiments

We used a modified version of the T-Reqs [11] fuzzer for the exper-

iments. The modifications include adding support for encrypted

HTTP requests, and setting content-length dynamically based

on the length of the body. We also modified the T-Reqs source

code to avoid using < and > characters to parse the grammar, since

these characters were also used in the XSS attack payload that was

present in generated requests.

Input grammars were created in accordance with RFC specifica-

tions, encompassing all standard components of the content type

and their possible values. The fuzzer was executed using these spe-

cific grammars
2
for several hours, generating and testing a total of

373,670 requests across 5 WAFs and 6 web application frameworks.

Our server infrastructure was deployed across multiple cloud

platforms, including Amazon AWS, Google Cloud, and Microsoft

Azure. This configuration was utilized to host our web applications

and conduct the experiments.

5.2 WAF Configuration and Setup

To comprehensively assess the resilience of WAFs against mutated

HTTP/1.1 web requests, we conducted an extensive evaluation of

several WAFs. The selection criteria focused on solutions with sig-

nificant adoption across both commercial and open-source domains.

The WAFs included in this study were AWS WAF, Cloudflare WAF,

Google Cloud Armor, Microsoft Azure WAF, and ModSecurity on

NGINX. This selection enabled us to evaluate the effectiveness of

both widely-used community-driven tools and leading commercial

solutions in the industry.

For all tested WAFs, default settings were utilized without any

modifications to preserve the integrity of the testing environment

and ensure the results accurately reflected typical user experiences.

The consistent configuration, especially with the widespread adop-

tion of the OWASP CRS, enabled a fair comparison across WAFs

despite their differing underlying technologies and implementation

2
Available in the public repository
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Table 1: List of Tested WAFs and Their Supported Request

Content-Types (As of July 2024).

WAF Content-Type Bypassed

Cloudflare WAF multipart, json, xml Yes

Microsoft Azure WAF multipart, json Yes

Google Cloud Armor multipart, json Yes

Amazon AWS WAF multipart, json No

ModSecurity on NGINX multipart, json, xml Yes

strategies. This standardized methodology established a clear base-

line to evaluate each WAF’s capability to process mutated HTTP

requests, effectively highlighting their individual strengths and

potential vulnerabilities.

Table 1 lists the WAFs and their supported content-types in our

study.

AWSWAF.AWSWAFwas configured using Elastic Load Balanc-

ing (ELB). We employed the AWS Managed Ruleset in conjunction

with OWASP CRS version 3.0, using default settings to accurately

represent typical user configurations.

Cloudflare WAF. Cloudflare WAF was set up as the DNS

provider for our domain, applying itsWAF to all incoming traffic via

its global CDN. We used the Pro version, enabling both Cloudflare’s

Managed Ruleset and the OWASP CRS to ensure comprehensive

threat coverage.

Google Cloud Armor. Google Cloud Armor was deployed

on a virtual machine behind Google Cloud’s Load Balancer. We

configured it with rulesets for SQL injection and XSS protection

(sqli-v33-stable and xss-v33-stable) at Sensitivity Level 1.

Microsoft Azure WAF. Microsoft Azure WAF was set up

through Azure’s Application Gateway using the WAF V2 tier, with

OWASP CRS version 3.0 enabled by default. This configuration

aligns with common deployment practices.

ModSecurity. ModSecurity was deployed as a plugin for NG-

INX, configured with OWASP CRS version 3.0 at Paranoia Level

1, reflecting the default settings commonly used in many environ-

ments. The setup adhered to the official documentation guidelines,

ensuring an accurate evaluation of its effectiveness in scenarios

typical of real-world deployments.

The influence of rulesets on our findings is minimal for several

key reasons. First, the attack payloads used in this study are inten-

tionally straightforward, designed to be blocked by all standard

rulesets across the tested WAFs, as confirmed during preliminary

testing. Second, our bypass techniques do not depend on obfuscat-

ing the payload itself, but rather exploit parsing inconsistencies,

focusing on how WAFs interpret HTTP requests before applying

their rulesets. This approach highlights that the bypasses stem pri-

marily from the WAF’s inability to correctly parse the request or

its decision to bypass parsing due to the complexity of the input,

irrespective of the specific ruleset in use.

5.3 Web Application Frameworks Setup

In this work, we evaluated seven widely-used web application

frameworks: Express, Node.js-HTTP, Flask, FastAPI, Gin, Laravel,

and Spring Boot. To comprehensively analyze their parsing capabili-

ties, we employed a combination of the frameworks’ default parsers

and HTTP parser packages sourced from reputable platforms. The

selection of parser packages was informed by their prevalence and

popularity within the developer community, as indicated by metrics

from resources such as npm and PyPi Stats. This approach ensured

that our study included modules that are both widely adopted and

representative of real-world usage.

To accurately test how each framework and parser handles the re-

quest body, we implemented the following approach: we attempted

to access the parsed content of the request body through framework-

specific methods such as request.body.parse(), etc. The goal

was to retrieve the value of a specific field (field), and have the

framework and parser process the entire request body. After pars-

ing, we searched for the sent attack payload within the parsed

content. If any of the parsed fields contained the attack payload,

it indicated that the request successfully bypassed the WAF, and

was correctly parsed by the framework and parser. We then sent a

success flag along with instance name and WAF information back

to our client to mark the successful attacks.

For parsing request bodies in our study, each framework’s default

parser was utilized. In cases where the default parser did not support

a specific content-type, we employed the most popular third-party

parsers for that content-type. This approach of using both default

and third-party parsers provided an understanding of how web

application frameworks handle and interpret HTTP requests under

different parsing scenarios.

For Node.js, the chosen parsers included Busboy and

Formidable for parsing multipart content types, and

fast-xml-parser for handling application/xml requests.

Since Express and the HTTP module do not support parsing of

multipart and xml content-types. For Python frameworks, we

integrated xmltodict and xmlminidom for XML parsing. Multipart

content types in Python were processed using python-multipart
parsers.

In all our tests, we strictly adhered to the official documentation

and examples of each framework, avoiding any custom develop-

ment. This ensured that our evaluation covered the most common

and correct usage patterns of these frameworks and parsers.

5.4 Validation of Bypass Effectiveness

To validate WAF bypasses with malicious payloads, we employed a

rigorous methodology. Each test began with the dispatch of an ini-

tial request, embedded with a malicious payload, through the WAF.

Upon receipt by the web application framework, the framework

attempted to parse the request and extract the content of the body,

subsequently storing it in a designated file on the server.

Our validation process compared the original malicious payload

with the content received and stored on the target server. A suc-

cessful bypass was determined if these two elements – the initial

payload and the stored content – were found to be identical. We

developed a script that compared all input payloads with their cor-

responding stored versions on the server. This approach allowed

us to precisely determine whether the malicious payload had cir-

cumvented the WAF and was accurately parsed by the target web

framework.
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Table 2: List of tested web frameworks and whether they are

vulnerable to at least one bypass in our study or not.

Framework Version Language Vulnerable

Laravel 10.48.16 PHP Yes

Spring Boot 3.2.2 Java Yes

Gin v1.9.1 Go Yes

Express 4.18.2 Node.js Yes

Fastapi 0.109.2 Python Yes

Flask 3.0.2 Python Yes

Node.js-HTTP 18.16.1 Node.js Yes

This process was necessary because defining a successful bypass

solely based on the ability of a request to evade the WAF would

lead to misclassification. Such a definition could include malformed

requests-those not conforming to HTTP standards or unprocessable

by any framework-as successful bypasses, inflating false positives

and obscuring real-world risks due to:

Unrealistic Attack Scenarios.Most WAFs allow malformed

requests to pass because they cannot parse them. If we were to

consider these instances as bypasses, more than 50% of mutated

requests could be misclassified as successful.

Practical Mitigation Challenges. Malformed requests are fre-

quently rejected at the framework level. Reporting these would

inflating false positives and obscuring actionable findings.

Real-World Impact. A true attack occurs when a malicious

request bypasses the WAF, is parsed by the framework, and the

payload is executed. Malformed requests that frameworks cannot

parse pose lower security risks and are lower priority.

All bypasses in our work represent successful attacks, meaning

the request bypassed the WAF and was parsed successfully by a

web application framework, enabling the malicious payload to be

executed (e.g., XSS or SQL injection).

5.5 Experiment Results and Analysis

Table 2 provides the list of frameworks and Table 7 in the Appen-

dix A provides the list of parsers that were inspected in our work.

The experiments revealed that all of the frameworks and parsers

were vulnerable to at least one bypass technique, highlighting the

effectiveness and practical implications of our findings.

6 Findings

Before diving into analyzing these bypasses and reporting them,

we first, analyze all results to retain only those bypassed requests

that are achieved with the minimum number of mutations. Then,

we classify bypasses based on their mutations. This allows us to:

• Identify the minimum mutations needed for a request to

bypass a WAF uniquely.

• Ensure our results are realistic, and our reports are minimal

and accurate by focusing solely on unique bypasses.

• Reporting and documenting bypass techniques and ensur-

ing that mitigation strategies can address entire classes of

bypasses rather than individual instances.

6.1 Identification of Unique Bypass Requests

In the process of testing and validating bypass techniques against

WAFs, identifying unique bypass requests is crucial for accurately

assessing the effectiveness of the discovered vulnerabilities. During

our experiments, we discovered 1207 mutated requests that were

successful bypasses. The identification of unique bypass requests in-

volves rigorous analysis and filtering of the mutated HTTP requests

generated during the testing phase.

Not all successfully bypassed requests are unique in terms of

the underlying techniques used. For instance, consider a scenario

where two mutations contribute to the bypass success:

• Mutation I: Introduces a \x00 character into the boundary

value of a multipart request, transforming –boundary to

–\x00boundary.
• Mutation II: Changes the capitalization of characters in

the charset parameter of the Content-Type header from

utf-8 to Utf-8.

While Mutation I, alone, constitutes a successful bypass strategy,

Mutation II does not contribute to bypassing the WAF indepen-

dently. However, when both mutations are combined into a single

request, the request successfully evades WAF detection due to the

presence of Mutation A. In this scenario, the unique bypass is at-

tributed to Mutation A, whereas Mutation B does not qualify as

an independent bypass strategy. And the request that is formed by

both of these mutations is not a unique bypass.

Tomaintain the integrity and accuracy of the findings, redundant

bypass requests that do not introduce unique evasion techniques

are filtered out during the analysis phase.

After applying this minimization technique, among all of the

generated requests, 1207 of them were unique bypasses found for

(WAF, Framework) pairs.

6.2 Classification of Bypasses

After extracting the bypasses with the minimum number of mu-

tations, we proceed with the classification of these bypasses. This

classification process is essential as it allows us to systematically

analyze and categorize the bypasses, facilitating the development

of effective defense mechanisms.

To achieve this, each bypass is examined based on the unique

mutation strategy and the mutated element used rather than the

specific mutation. For instance, consider a JSON request with the

body {"field1": "value1"}. If two distinct bypasses are achieved
by inserting a \x00 or \x02 after the second double quote, both

are classified under the same category: manipulating the field name
wrapper. Although different characters are used, the fundamental

concept remains consistent. This categorization simplifies the study

of bypass techniques by grouping similar strategies, thereby en-

abling a more structured approach to understanding and mitigating

these vulnerabilities.

6.3 Bypassed Requests Analysis

We now present the classification results of the bypassed requests

for each content-type in our work. Some of the mutation classes

are common among all tested content-types, they are defined once

but mentioned for each content-type that they were leading to a

successful bypass.
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Figure 3: Occurrence of Successful Bypasses For Multipart

Content-Types in Tested Frameworks

6.3.1 Multipart Bypass Classes. Our examination identified a total

of 351 unique bypasses related to multipart content-type parsing.

Figure 3 demonstrates valid bypass classes that we found in our

work for multipart content-type. Table 3 contains examples for each

discussed bypass category.

Boundary Delimiter Manipulation. This category involves

the removal or alteration of boundary delimiters within multi-

part content. For instance, removing the \r\n sequence before the

boundary string can confuse the parsing logic, leading to successful

bypasses.

Content-Type Parameter Tweak. This technique includes

modifications to the global Content-Type header’s name, such as

removing or inserting characters.

Content-Disposition Disruption. This technique targets the

Content-Disposition header within the multipart content, altering

its structure to evade detection.

Disrupted Header Injection to Body. This category includes

adding redundant headers with disrupted header name directly

into the multipart body content, which can mislead the WAF into

processing the content incorrectly.

Content-Type Tweak in Body. Here, manipulations are per-

formed on the Content-Type value within the body and not in the

global header, such as inserting characters.

Charset Value Alteration in Body. This involves altering the

charset value within the body content, affecting how the WAF

interprets the encoding of the payload.

Header Separator Manipulation in Body. This technique

modifies the separator between multiple header lines in the multi-

part body content, such as replacing newlines with other characters.
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Figure 4: Occurrence of Successful Bypasses For applica-

tion/xml Content-Types in Tested Frameworks

Boundary Delimiter Removal. This category involves the

complete removal of boundary delimiters, affecting the WAF’s abil-

ity to correctly parse multipart sections.

Linefeed Removal. This technique removes newline and car-

riage return characters. For example, removing the linefeed after

the request headers and before beginning the boundary delimiter

for the multipart request body. This approach can cause the WAF

to misinterpret the structure of the multipart content.

Boundary Header Tampering. In this category, manipulations

involve changes to the boundary value in the header, such as ap-

pending a semicolon to the boundary parameter in the content-type

header line.

Whitespace Alteration. In this category, the whitespace char-

acter is replaced with \t in the content-type header. The re-

quest header must use the parameter value continuation feature

of HTTP to define the boundary for this bypass to be effective.

boundary*0=re;boundary*1=al
Disrupted Body Field. In this category, manipulations involve

inserting invalid characters in a field name. The request header

must use the parameter value continuation feature of HTTP to

define the boundary for this bypass to be effective.

6.3.2 XML Bypass Classes. Our analysis revealed a total of 299

unique bypasses for XML content types. Figure 4 demonstrates valid

bypass classes for application/xml content-type. Table 4 contains

examples for each discussed bypass category.

Extra Field Addition. This category involves adding an extra

field outside the defined XML schema. For example, inserting a new

field such as <field2>value2</field2> exploits schema valida-

tion weaknesses, allowing malicious payloads to bypass security

checks.
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Table 3: Classification of Multipart Bypass Categories with Examples. Removals are displayed with a strike-through text with a

gray background, while additions and replacements are shown with only a gray background.

Category Name Request Example

Boundary Delimiter Manipulation \r\n —boundary

Content-Disposition Disruption content-disposition: form-da \x00 a;

Distorted Header Injection to Body conten\x00-extra: something

Content-Type Tweak in Body Content-Type: text/plain \x00 ; charset=UTF-8

Charset Value Alteration in Body charset= \x00 UTF-8

Header Separator Manipulation in Body content-disposition: form-data; name="f1" \x00

Content-Type Parameter Tweak C o ntent-Type: multipart/form-data;

Boundary Delimiter Removal —boundary

Linefeed Removal Content-Type: multipart/form-data; boundary=real\r \n \r\n

Whitespace Alteration Content-Type: \t multipart/form-data; boundary*0=re;boundary*1=al

Disrupted Body Field content-disposition: form-data; name="field1 \x00 "

Boundary Header Tampering —boundary=value ;

DOCTYPE Closure Confusion. This class confuses the WAF

by placing an extra character at the end of the xml body which

confuses the WAF in parsing the DOCTYPE entity of the XML.

Schema Closure Manipulation. This technique manipulates

the closure of XML schemas. By inserting characters, new elements,

or duplicated field names and values at specific positions within

the schema, the structure of the XML document is altered in a way

that evades detection by the WAF.

Newline Abuse. This method achieves the bypass by placing

an extra new-line before the content-type header.

Content-Type Header Parameter Removal. Bypasses

achieved by removing the Content-Type header’s name. Such ma-

nipulations exploit the dependency of some WAFs on specific

header configurations to enforce security rules.

Content-Type Header Replacement. In this technique, the

parameter name within the Content-Type header is replaced with

its value. This manipulation can confuse WAFs that rely on precise

header structures for detection.

Misplaced Field. This method involves placing field values

outside their corresponding XML tags. By altering the position of

values within the XML document, the attack payload can bypass

WAF rules that expect a specific structure.

6.3.3 JSON Bypass Classes. In our work, we identified a total of

557 unique bypasses for JSON content types. Figure 5 demonstrates

valid bypass classes for application/json content-type. Table 5 con-

tains examples for each discussed bypass category.

Content-Type Removal. This category involves bypassing the

WAF by removing the Content-Type: application/json header
from the global header. This manipulation exploits the reliance of

some WAFs on specific content-type headers to enforce security

rules.

Field Wrapper Manipulation. In this category, the attack is

achieved by adding characters such as \x00 between the field name

and the colon in the JSON object. This manipulation disrupts the

field parsing.
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Figure 5: Occurrence of Successful Bypasses For application/j-

son Content-Types in Tested Frameworks

Double Quote Replacement. This method replaces the double

quotes surrounding the field names and values with other charac-

ters.

Field Name Hack. This technique involves altering characters

within the field names of the JSON object. For example, replacing a

character in the field name with "\x00" can bypass WAFs that do

not properly handle such anomalies in field names.

Content-Type Parameter Manipulation. Here, the manipula-

tion targets the Content-Type header name.
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Table 4: Classification of XML Bypass Categories with Examples

Category Name Request Example

Extra Field Addition <field1>value1</field1> <field2 attr="history">hi</field2>

DOCTYPE Closure Confusion <!DOCTYPE BOOK [...]><field1>value1</field1> ] </BOOK>

Schema Closure Manipulation <genre:schema><field1>value1</field1> j </genre:schema>

Newline Abuse \r\n Content-Type: application/xml

Content-Type Header Parameter Removal Content-Type: application/xml

Content-Type Header Replacement application/xml application/xml

Misplaced Field ... value1 <field1>value1</field1>...

Table 5: Classification of JSON Bypass Categories with Examples.

Category Name Bypassed Request Example

Content-Type Removal Content-Type: application/json

Field Wrapper Manipulation { "field1" \x00 : "<script>alert(document.cookie)</script>" }

Double Quote Replacement { "field1 \x00 : "<script>alert(document.cookie)</script>" }

Field Name Hack { "f \x00 eld1": "<script>alert(document.cookie)</script>" }

Content-Type Parameter Manipulation Content - Type: application/json

6.4 Practicality of Findings

The bypass findings of this paper for three content types are practi-

cal and useful only if these content types are popular amongst the

web applications in the real world. We performed a study on a sam-

ple collected from real-world applications to gauge the popularity

of these content types. In addition, we performed another study

to check interchangeability between the content-types which can

also contribute to the practicality of our findings.

We collected 100 high-ranking websites from PublicWWW
3
,

which is a search engine for website source codes, by using the

query below which was tailored for the needs of the study.

type="email" "forgot password" -reCAPTCHA

This search query allowed us to find “forgot-password” web

pages which contain an HTML form with an email-type input field

and does not contain a CAPTCHA. The presence of CAPTCHA

does not allow replaying the “forgot-password” requests, which

makes it easier and faster to check the interchangeability of con-

tent types. We chose the first 100 search results, which are the

“forgot-password” pages of popular websites ranking between 3K-

50K. About half of these webpages were excluded from the study

for reasons such as “non-english language”, “obscenity” and “an

emerging captcha”.

On each “forgot-password” page, we submitted the form

after typing in a non-existent email address and intercepted

the generated HTTP request on the Burp Suite tool. We

examined the Content-Type header field and the request

body format to decide the content-type for each request. We

found that more than two-thirds of the websites use the

3
https://publicwww.com/

application/x-www-form-urlencoded, while one-fourth of them
use the application/json and its variation. Only two websites

use multipart/form-data and one uses URL parameters.

For each intercepted “forgot-password” request, to check the

interchangeability between content types, we used the “Change

body encoding” feature of Burp Suite (in the “Repeater” sec-

tion) to convert the content type to multipart/form-data in

application/x-www-form-urlencoded requests. We then exam-

ined the response status code and response body to check the

sameness of responses, which indicates that the application does

not differentiate those two content types. We found that more than

ninety percent of websites accept them both.

These results suggest that our bypass findings are

widely applicable and practical across web applications.

The largest portion (i.e., more than two-thirds), which uses

application/x-www-form-urlencoded, are affected by our

multipart/form-data findings, since an attacker can easily

switch the content type and apply the bypass techniques. The

second largest portion, which uses application/json, is affected
by all the relevant bypass findings we reveal in this paper. The fact

that these two content types together make up more than 90%

of content types used across web applications, clearly shows the

extent of the practicality and impact of these bypass techniques.

7 Protecting WAFs and Frameworks by

Normalizing HTTP Request Bodies

In this section, we discuss our approach to mitigate the identified

vulnerabilities by introducing an HTTP multipart body normalizer

that protects web application firewalls (WAFs) and web application

frameworks from parsing-related attacks. The normalizer acts as

a gateway for the WAF that strictly enforces RFC grammar rules

10
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1 POST / HTTP /1.1
2 Host: target.com
3 Content -Type: multipart/FoRm -dAtA; boundary ="1234"
4 Content -Length: 90
5

6 --1234
7 Content -DISPOSITION :\tform -data;name="files ";\t filename

="ab.txt"
8

9 Foo
10 --1234--

Listing 5: A request before normalization.

related to multipart form data, and rejects requests that are not

compliant. For those requests that are compliant, optional message

body components and fields that must be ignored are removed.

This ensures that problematic message constructs are removed

before they can induce differential parsing behavior between the

WAF and the web application framework. The HTTP-Normalizer’s
functionality could be expanded for each content-type to provide

protection against other popular content types as well. We are

introducing a proof of concept description in this section, and use

multipart/form-data as demonstration.

7.1 Overview of HTTP Normalizer

The HTTPmultipart body normalizer serves two primary functions:

normalizing multipart request bodies, and rejecting non-compliant

requests. Upon receiving anHTTP request, the normalizer separates

the request’s headers and body using the AIOHTTP Python library.

It then parses and validates the request’s Content-Type header,

and if it indicates that the message body uses the MIME multipart

encoding, it performs one of the following actions:

Normalization. The normalizer begins by parsing requests us-

ing a strict multipart MIME parser generated from the ABNF in the

RFCs. The output data structure of the parser is capable of represent-

ing only the necessary components of a multipart message body.

Deprecated and optional portions of the multipart message are not

representable in this structure. The structure is then reserialized

and forwarded to its destination. Crucially, the normalized request

is deserialized from a data structure in which invalid state is not

representable, so the output of the normalizer is never malformed.

Rejection. If the normalization process cannot be completed be-

cause necessary components of the request body uses a deprecated

RFC feature or is malformed, the request is rejected.

Listing 5 demonstrates a sample malformed request before being

passed to the normalizer. Listing 6 demonstrates how the sample

request would look like after being normalized.

7.2 Normalizing Request Body

Currently, the normalizer applies only to requests that use a mul-

tipart transfer encoding. Future enhancements will extend this

normalization capability to other content-types, aiming to demon-

strate the viability of this approach in enhancing WAF security

by rejecting malicious HTTP requests and reducing false positives

through normalization. This methodology can be uniformly applied

to all content types to achieve comprehensive normalization.

1 POST / HTTP /1.1
2 Host: target.com
3 Content -Type: multipart/form -data; boundary =1234
4 Content -Length: 90
5 Accept: */*
6 Accept -Encoding: gzip , deflate
7 User -Agent: Python /3.12 aiohttp /3.9.5
8

9 --1234
10 Content -Type: text/plain
11 Content -Disposition: form -data; name="files"; filename ="

ab.txt"
12

13 Foo
14 --1234--

Listing 6: The same request after normalization. Note the

standardized capitalization and spacing, removed trailing

line ending, and inserted Content-Type MIME header.

Table 6: Evaluation Metrics for HTTP Normalizer.

Bypassable Requests

Normalized 8

Rejected 55

Total Attempts 63

7.3 Evaluation of Normalizer

We evaluated the normalizer first by verifying that it does not reject

any of a set of valid multipart message bodies. We obtained these

from the test suites of the Tornado web server, RStudio, and the

multiparty multipart message parser.

We sampled bypasses from all 12 discovered bypass classes that

we mentioned in subsection 6.3.1 and took 63 bypassable requests

in total to test against the normalizer, and recorded whether the

request was accepted, normalized, or rejected. Note that while we

could mutate HTTP requests using our fuzzer and send all of them

to the normalizer, it was unnecessary because: 1) even if a request

bypassed the normalizer, it would have been blocked by the WAF

since it was not among the found bypasses, and 2) the normalizer

will ultimately be merged into existing WAF rulesets and does not

need to be fuzzed separately because it is not a WAF itself, but a

ruleset enforcer.

Table 6 demonstrates these evaluation metrics. Out of the 8

bypassable requests that are not rejected by the normalizer, all are

blocked by Cloudflare’s WAF, resulting in a 100% success rate.

7.4 Performance Cost

The HTTP-Normalizer was developed to demonstrate that all iden-

tified bypass techniques can be prevented if WAFs adhere to proper

parsing standards. Our findings, including the lack of successful by-

passes against AWSWAF, validate this hypothesis. The intent of the

project was not to create a fully optimized, production-grade tool

with minimal overhead and broad content-type support, but rather

to prove that an effective solution is feasible and implementable for

a specific content type. By strictly adhering to RFC grammar rules,

the HTTP-Normalizer effectively eliminates all bypass methods.

While it currently functions as an additional evaluation layer, its
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rules can be seamlessly integrated into existing WAF rulesets with

minimal performance impact.

8 Discussion

In this section, we discuss key considerations and challenges iden-

tified in our work, as well as exploring potential for future research

and development based on our findings.

8.1 Potential for WAF and Framework

Fingerprinting

Previous research has shown that it is possible to use HTTP parsing

discrepancies to fingerprint web servers by utilizing a combina-

tion of requests known to trigger specific actions on target web

servers [22]. The findings of our work also show that parsing dis-

crepancies are present in WAFs and web application frameworks,

which opens up the possibility of fingerprinting them by sending

requests known to bypass and those that do not bypass WAFs. A

concrete example from our findings would be sending a request to

the target from the JSON bypass class under the Field Name Ma-

nipulation category, which we know will only bypass and succeed

if the target runs on Google Cloud Armor with the Spring Boot

framework. We can send the request and then analyze the response

to identify whether the underlying WAF is Google Cloud Armor.

Future work could expand on this and propose a fingerprinting

methodology on WAFs by using the findings of our work.

8.2 Practical Considerations

We focused on prominent web frameworks and their default or

most popular parser packages. While multipart forms are common,

not all frameworks have dedicated parsers for them, often leading

to custom implementations from developers. These custom parsers

can increase the risk of developer errors, potentially allowing by-

passed requests to be parsed successfully server-side. However, our

work did not examine custom parsers, leaving their implications

outside the scope of our findings.

8.3 Limitations

This work primarily focuses on HTTP/1.1 web requests, thus future

research could investigate HTTP/2. Also, the scope of WAFs tested

may not cover all available systems. Future work could expand the

range of tested frameworks and target additional content-types

beyond those examined in this work. Exploring these areas would

provide a more thorough understanding of WAF vulnerabilities and

the potential for bypasses.

8.4 Usability vs. Security Debate

While our findings show that WAFs can prevent these bypasses

by adhering to proper RFC standards, real-world implementations

may face challenges due to compatibility constraints or customer-

specific requirements. Therefore, we do not blameWAF vendors for

these bypasses, as they often face trade-offs between security and

operational needs. However, the our proposed defense mechanism,

the HTTP-Normalizer, demonstrates that all identified bypasses in

this work are theoretically defendable, ensuring enhanced security

without significantly impacting usability. Also, note that not all

WAFs are susceptible to every type of bypass, suggesting that a

well-designed parser adhering to all relevant RFC rules can mitigate

these vulnerabilities.

9 Ethics Considerations and Disclosure

Information

All attacks and bypasses in this paperwere conducted in a controlled

environment using our infrastructure, ensuring no external impact.

For our analysis, no malicious payloads were sent to the tested

websites, and each site received no more than 10 requests.

All WAF tests adhered to bug bounty protocols, and bypasses

were disclosed to the affected vendors, who subsequently acknowl-

edged the existence of these vulnerabilities.

• Google Cloud Armor classified our report as a Tier 1, Prior-

ity 1, Severity 1 vulnerability under the "Insecure by Default"

category and rewarded us with a bug bounty.

• ModSecurity acknowledged all bypasses we reported in

CRS 3.3.

• Cloudflare confirmed the reported bypasses and stated that

they are working on a fix.

• Microsoft Azure acknowledged the bypasses in CRS 3.0,

which was the default ruleset at the time of our study. How-

ever, they are retiring CRS 3.0 and transitioning to DRS 2.1,

an enhanced ruleset based on CRS 3.2, which addresses these

vulnerabilities.

Our results and source code, including fuzzer input grammars,

are publicly available
4
. Sensitive bypass requests will remain re-

stricted until the vulnerabilities are resolved.

10 Conclusion

This work has highlighted the significant impact of parsing dis-

crepancies on the effectiveness of Web Application Firewalls

(WAFs) in protecting against cyber threats. Our experiments

across major WAFs, particularly with multipart/form-data,
application/json, and application/xml content-types, resulted
in 1207 bypasses. These bypasses were successfully parsed by our

target web application frameworks employing default or popular

request parsers. This finding indicates a critical vulnerability in

WAFs’ ability to uniformly interpret and filter web requests.

This paper’s investigation into popular WAFs, including Cloud-

flare, Cloud Armor, AWS WAF, Azure WAF, and ModSecurity, high-

lights significant concerns regarding parsing discrepancies in their

request analysis. These discrepancies pose a substantial risk, as

WAF users may falsely believe they are protected against common

attack payloads.

As attackers employ increasingly sophisticated methods, the

development of dynamic, intelligent WAFs becomes important.

Our research not only contributes to the understanding of current

WAF limitations, but also proposes effective solutions to defend

against the identified threats. This work emphasizes the critical

need for improved parsing consistency in WAFs to ensure robust

protection against these attacks. Our proposed HTTP-Normalizer
offers a promising solution, balancing security and usability by

enforcing strict compliance with RFC standards.

4
https://github.com/sa-akhavani/waffled/
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A Tested Parsers

Table 7: List of tested parsers, their weekly downloads as of

July 2024 collected from NPM and PyPI Stats
5
website, and

whether they are vulnerable to at least one bypass in our

study or not.

Parser Version Vulnerable Downloads

Node.js

Busboy 1.6.0 Yes 8,639,607

Formidable 3.5.1 Yes 6,998,735

fast-xml-parser 4.3.3 Yes 14,254,527

Python

xmltodict 0.13.0 Yes 10,374,671

xmlminidom 3.10.12 Yes n/a

python-multipart 0.0.9 Yes 4,288,034

B Web Framework Parsing Methods

Table 8 summarizes the methods used for parsing request bodies in

our work in each framework. If a content-type is not supported by

the default parser of a framework, popular third-party parsers are

used instead.

5
https://www.npmjs.com and https://pypistats.org
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Table 8: Request Body Parsing Methods in Tested Frameworks

Framework Content-Type Parsing Method

Express (Node.js) application/json request.body

FastAPI (Python) application/json request.json()

Laravel (PHP) application/json $request->collect()

Spring Boot (Java) application/json Defined a class and used @RequestBody

Laravel (PHP) multipart/form-data $request->collect()

Express (Busboy) multipart/form-data form.parse(request)

FastAPI (Python) multipart/form-data field1: str = Form("none")

Flask (Python) multipart/form-data request.form

Spring Boot (Java) multipart/form-data @RequestParam(value = "field1") String field1

Laravel (PHP) application/xml $request->getContent()

Spring Boot (Java) application/xml Defined a class and used @RequestBody

Flask (xmltodict) application/xml parse(request.data)

Gin (Go) application/xml Defined an xmlform with field1 and field2
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